Dielectric spectroscopy is a form of impedance spectroscopy where the dielectric properties (dielectric constant and dissipation factor) of a medium or sample are characterized as a function of frequency. A dielectric is an electrical insulator with very low conductivity at DC; because of its polarizability, however, a dielectric can store charges in the low or mid-frequency range. This capacitive effect makes dielectrics useful for charge storage and dissipation. Applications of dielectrics include:
An impedance study of dielectrics is needed to fully understand the material physics as well as to optimize device performance.
Dielectric characterization is carried out on a sample with well-defined geometry contacted with two electrodes. Typically, this is achieved with a parallel-plate fixture (see Figure 1) or an immersion probe with a specific electrode area and spacing. Based on this geometry, R||C or D||C equivalent circuit models can be established, and the dielectric constant (permittivity) is extracted as a result. A fixture such as the one shown in Figure 1 is often combined with a Q meter or an instrument based on an auto-balanced bridge. However, these instruments prohibit measurements at low frequencies and at high impedance.